含有〈生理〉标签的文章(7)

食物与人类#1:卡路里迷信

食物与人类#1:卡路里迷信
辉格
2018年6月11日

如今,焦虑于自己体重的人们在谈及一种食物时,最普遍关心的指标,恐怕就是卡路里了。包装食物的卡路里标签,常见食材的公认卡路里值,以及营养专家们为各种流行菜谱所做的卡路里估测,已成为人们估算和控制自己每日能量摄入的主要依据。

这么做当然不无道理,毕竟能量过剩是肥胖的主要原因,问题是,单单一个卡路里指标,对于我们把握人体的能量均衡状况究竟有多大帮助?我对这问题感兴趣,并准备在此花费大量篇幅谈论,并非想要提供一份减肥指南(我既不是营养专家,也不是健康顾问),而是因为,和所有生物一样,能量均衡向来处于人类生存问题的核心位置——尽管直到最近几十年之前,焦虑的方向通常是相反的。

众多文化元素和技术传统,正是在试图解决能量均衡问题的长期努力中发展和积累起来,它们构成了人类文化的很大一块,而且只有将它们围绕能量均衡问题组织在一起时,其意义才凸显出来,才变得易于理解。

让我从卡路里的测量开始说起。

阿特沃特法

就其本意而言,食物热量值所要测量的,是食物带给人体的能量净摄入,即食物包含的化学自由能,减去消化过程所耗能量,再减去残留在排泄物中的自由能,剩下的就是离开消化系统进入其他人体组织,最后要么以糖原或脂肪形式存储起来,要么在细胞呼吸作用中消耗掉的能量。

可是,要准确测量这一数值是非常麻烦的,而且个体差异和随身体状况而出现的波动也非常大,在一些精细的个体研究中,会采用诸如用同位素示踪剂对食物成分走向进行全程跟踪的方法,考虑到有待测量的食物种类如此繁多,精细测量的成本难以负担,只有偷懒的做法才是可行的。

业界通行的各种测量法,都是阿特沃特法(Atwater system)的某种改良版本,后者由化学家威尔伯·阿特沃特(Wilbur O. Atwater)于1890年代开发:首先用炸弹式热量计(bomb calorimetry)以燃烧法测定各宏营养素(碳水化合物、脂肪和蛋白质)的单位重量热值,然后测量特定食物的各宏营养素含量,得到总热值,最后按某一固定比例(比如10%)扣除排泄物中的能量残余,得到净热值。

我们每天在卡路里标签上看到的数字,(more...)

标签: | | | |
7944
食物与人类#1:卡路里迷信 辉格 2018年6月11日 如今,焦虑于自己体重的人们在谈及一种食物时,最普遍关心的指标,恐怕就是卡路里了。包装食物的卡路里标签,常见食材的公认卡路里值,以及营养专家们为各种流行菜谱所做的卡路里估测,已成为人们估算和控制自己每日能量摄入的主要依据。 这么做当然不无道理,毕竟能量过剩是肥胖的主要原因,问题是,单单一个卡路里指标,对于我们把握人体的能量均衡状况究竟有多大帮助?我对这问题感兴趣,并准备在此花费大量篇幅谈论,并非想要提供一份减肥指南(我既不是营养专家,也不是健康顾问),而是因为,和所有生物一样,能量均衡向来处于人类生存问题的核心位置——尽管直到最近几十年之前,焦虑的方向通常是相反的。 众多文化元素和技术传统,正是在试图解决能量均衡问题的长期努力中发展和积累起来,它们构成了人类文化的很大一块,而且只有将它们围绕能量均衡问题组织在一起时,其意义才凸显出来,才变得易于理解。 让我从卡路里的测量开始说起。 阿特沃特法 就其本意而言,食物热量值所要测量的,是食物带给人体的能量净摄入,即食物包含的化学自由能,减去消化过程所耗能量,再减去残留在排泄物中的自由能,剩下的就是离开消化系统进入其他人体组织,最后要么以糖原或脂肪形式存储起来,要么在细胞呼吸作用中消耗掉的能量。 可是,要准确测量这一数值是非常麻烦的,而且个体差异和随身体状况而出现的波动也非常大,在一些精细的个体研究中,会采用诸如用同位素示踪剂对食物成分走向进行全程跟踪的方法,考虑到有待测量的食物种类如此繁多,精细测量的成本难以负担,只有偷懒的做法才是可行的。 业界通行的各种测量法,都是阿特沃特法(Atwater system)的某种改良版本,后者由化学家威尔伯·阿特沃特(Wilbur O. Atwater)于1890年代开发:首先用炸弹式热量计(bomb calorimetry)以燃烧法测定各宏营养素(碳水化合物、脂肪和蛋白质)的单位重量热值,然后测量特定食物的各宏营养素含量,得到总热值,最后按某一固定比例(比如10%)扣除排泄物中的能量残余,得到净热值。 我们每天在卡路里标签上看到的数字,大致就是这么来的;一百多年来,这套方法基本没变,主要改进是食物成分测量变得更精确了,同时对碳水作出了更细致的分类,比如酒精的热值远高于其他碳水而更接近脂肪,因而被单独列为一类,单糖和多糖被区别对待,不可溶纤维素的热值被剔除。 很明显,阿特沃特法的致命缺陷是:首先,它完全没考虑摄食与消化过程本身的能量开销,其次,它假定食物消化吸收率是恒定的,而现实远非如此;假如你吃的全都是极易消化的深度加工或充分烹饪的食品,这一缺陷或许还可以接受,至少其间差异比较恒定因而易于做出调整,可是,当我们将视野扩展到漫长的人类历史以及千差万别的饮食习俗时,消化开支和吸收率差异就难以忽略了。 实际上,消化过程的能量开销可以非常高。 黑猩猩平均每天花6个小时咀嚼食物,每小时耗能300卡,所以仅咀嚼一项的开销便超出了人类成年男性的基础代谢率(我的基础代谢率大约1600卡);当然,人类花在咀嚼上的时间没那么多,除了口香糖或五香豆爱好者之外,每天不到一小时(儿童稍长),能耗也没那么高,因为我们的牙齿、颚骨和咀嚼肌都远不如猿类发达。 人类咀嚼负担低,是因为相比其他大猿,我们的食物富含淀粉和脂肪,纤维量低,而且大多经过加工和烹饪,因而较少需要咀嚼,咀嚼时也不太费力;我们的咀嚼负担很大程度上转移给了菜刀、杵臼、磨盘、绞肉机、榨油机、榨汁机、炖肉锅……它们同样需要能量,但能效高得多,而且可以利用外部能源,比如让驴替我们拉磨。 2006年BBC曾组织了一次为期12天的实验(并拍成了纪录片),9位志愿者被关在一个公园里,提供给他们的食物几乎囊括了超市里常见的水果、蔬菜和坚果,共50种,包括高热量的椰枣、核桃和香蕉,不限量,敞开吃,但条件是只能原样生吃。 结果是,这些人整天在吃,每天吃掉5公斤食物,若按标签数字计算,他们每天摄入的热量高达2000卡(女)或2300卡(男),远超基础代谢率,而且他们除了吃睡也没其他活动,可仍然总觉得饿,而事实也表明他们的感觉是对的:实验结束时,所有人的体重都大幅降低,平均减重4.4公斤。 可见,若果真按猩猩的吃法吃,人类是活不下去的,无论食物多么丰富且唾手可得,实际上,BBC实验里的食物已比猿类的大幅改进,它们都来自超市,经过人类长期选育,相比野生种,纤维量和毒性更低,糖类与脂肪含量更高,黑猩猩在野外吃的水果,大部分都是人类难以下咽甚至容易中毒的。 第二阶段消化开支发生在肠胃里,体现为饭后数小时内人体代谢率的上升,上升幅度随食物类型而异,油脂最容易消化,饭后代谢率仅上升6%,碳水其次,15%,蛋白质最难消化,30%。(注:这些数字都是指饭后代谢率波动曲线的峰值) 除了峰值水平高低之外,决定肠胃能耗的关键因素是饭后代谢高峰的维持时间,而这取决于食物在肠胃特别是胃里的停留时间;同样是肉,在猫科动物胃里会停留5-6个小时,狗2-4小时,而人类只有1-2小时,肉在猫胃里停这么长时间是因为它们更倾向于大块吞食,擅长囫囵吞的蟒蛇更夸张,饱餐之后的消化过程有时长达一周。 实际上,进化已将人类的胃改造的无法将食物容留更长时间,无论消化程度如何,胃都会在饭后数小时内将自己排空(2小时内会排空一半,再过2-3小时完全排空),那些来不及消化的食物就会成为排泄物而浪费掉;这就构成了一个消化瓶颈,当食物过于粗劣(即易消化部分的营养密度过低),未经起码的加工和烹饪时,人体的能量净摄入就会被该瓶颈卡住,而与有多少食物可吃不再相关,当食物粗劣到一定程度时,该瓶颈的通过量将小于人体所需,吃得再多也减肥。 最容易被这瓶颈卡住的,是瘦肉,特别是未经充分加工的大块骨骼肌,每块骨骼肌都由坚韧的三级筋膜结构将肌纤维层层包裹而成,极难分解,有医生曾观察过,条块状生牛肉在离开胃时几乎保持原样,所以如果我们像猫科动物那样大块吞食瘦肉,绝大部分会浪费掉,考虑到它们耗掉的消化液和肠胃蠕动开销,净摄入将是负的。 但只须一些简单处理即可大幅提升上述瓶颈的通过率,比如用棍子敲打肉块,将肉剁成末或捣成糜,加热到60度以上并维持几分钟,把肉在常温下放几天让细菌完成部分分解工作,或像蒙古骑兵那样把肉块垫在马鞍下面跑上几个小时(这曾被认为是神话,但如今已得到人类学家证实),等等,所有这些其实都是在模拟胃的功能,继咀嚼之后,人类将另一项消化任务外部化了。 肠道也十分耗能,而且也构成了一个消化瓶颈,因为人类肠道很短,整副肠胃也很小,即便在肠胃普遍较小的灵长类里,人类也甘居末位,肠胃占体重的比例只有灵长类均值的60%;肠胃小,肠道短,意味着加工能力有限。 小肠是营养吸收的关键窗口,食物在小肠的停留时间和胃差不多,而一旦离开小肠进入大肠,其吸收率便大幅下降,这是因为,尽管食物在大肠停留很久(30-40小时),但大肠阶段的消化主要靠肠道菌群完成,很大部分营养被它们分走了,特别是蛋白质,在大肠内的吸收率为零。 展示小肠瓶颈的最佳例子是鸡蛋,虽然都富含蛋白质,但鸡蛋和肌肉十分不同,它的蛋白质未被严密包裹,在机械强度上不构成消化障碍,因而不会被胃瓶颈卡住,所以很多营养专家曾推荐生吃鸡蛋,可实验表明,生吃鸡蛋的蛋白质吸收率只有51-65%,而熟吃可以达到91-94%,障碍显然在小肠的处理能力。 小肠瓶颈也会卡住淀粉,充分发酵烘培的面包,煮熟的土豆,淀粉吸收率可高达95%,但生面粉只有71%,生土豆51%,芸豆和大麦片甚至在煮熟后吸收率也84%。 肝脏是人体能耗最大的器官,占基础代谢27%,虽然并非全部用于消化,但也十分可观;它是酒精和脂肪代谢的关键器官,所以其处理能力对这两类食物的消化也构成了瓶颈,但更容易卡住的瓶颈,是它的解毒能力,人类对付毒素的能力远远不如猿类近亲,这就是为何那些黑猩猩甘之如饴的野果嫩叶大多让我们难以下咽。 毒素是植物对付天敌的主要武器,除了某些植物的果实是它们希望被动物吃掉(以便散布其种子)的之外,植物的其余部位都可能含有毒素,当食物中毒素含量超出肝脏的处理能力时,消化道就会以呕吐和腹泻的方式尽快将所有内容物一概排出。 尽管长期的甄选、驯化和选育降低了我们食谱中植物的毒性,但并未完全消除,许多人仍对茄科和十字花科蔬菜中的毒素十分敏感,作为八亿人主食的木薯(cassava)毒性很强,只有仔细处理之后才勉强可食,但也只是把急性中毒变成慢性中毒而已,近几年委内瑞拉的饥荒中已有数十人死于木薯,因为他们不懂如何处理。 最常见的植物毒素是单宁,是涩味和遢口感的主要来源,微量摄入无妨(有时甚至是受青睐的,比如用橡木桶装红酒的主要效果就是增加单宁含量),大量摄入会中毒;橡实和板栗都富含单宁,若作为零食,生吃也没问题,但一些加州的印第安部落曾以橡实为主食,为了解毒,他们投入大量劳动对橡实进行杵捣、浸泡、淘洗和烘烤,可我们知道,猪大量生吃橡实也不会中毒。 饮食变迁的主线 与黑猩猩分开之后的数百万年里,我们祖先对待食物的方式经历了极大改变,开发了众多技术和习俗来处理食物,贯穿其中的一条主线是,越来越多的消化任务被外部化以降低人体的代谢负担:以切割、捶打、杵捣代替咀嚼,以研磨、揉擀、熟成、浸泡、发酵代替胃活动,以腌制、发酵、烹饪代替肠道功能,以浸泡、淘洗、加热代替肝脏解毒功能。 随着代谢负担减轻,相关的组织器官便在选择压力之下趋于缩减和退化:牙口缩小、咀嚼肌退化、嘴唇变薄、肠胃缩短变小、肝脏解毒功能削弱……因这些器官缩小退化和工作强度降低而节省下的能量,供养了我们那颗数倍于猿类近亲的、高能耗的大脑(占基础代谢19%)。 同样的事情也发生在运动系统上,我们的肌肉明显不如黑猩猩发达,也不如尼安德特人,因为工具和武器的大量使用也将部分运动机能外部化了,而这同样省下了很多能量,骨骼肌的能量开销不低,其静息状态下的能耗占基础代谢的18%,仅次于肝脏和大脑,正因此,其他条件(包括体重)都一样时,体脂率越高,肌肉量越小,基础代谢率越低。 能量均衡之大图景 假如我们将视野拓宽到代谢过程之外的整个能量均衡系统,就会发现更多文化元素在改变着人类的能量均衡等式。 保温 人体正常体温是37℃,但因为皮肤和皮下脂肪的保温作用,以及基础代谢的加热效果,所以理想环境温度低于37℃;所谓理想,是指在此温度下人体无须额外代谢即可维持体温恒定,在静息且裸体的情况下,理想气温是30℃左右(准确数字须按性别、体重、湿度和风速调整),过冷或过热都会带来额外代谢开销,冷到剧烈颤抖时,代谢率最高可升至基础值的5倍,中等程度的寒冷(低于理想气温十几度)也可将代谢率提高30%。 所以在不同气温条件下,维持均衡所需食物摄入量显著不同,这问题在高纬度地区尤为突出,那里的气温在绝大多数情况下都远远低于理想值;增加摄入,同时维持较高代谢率,当然也是个办法,但受生理系统工作潜力的局限,即便食物充沛,调节余地也并不很大,像剧烈颤抖时的超高代谢率,最多维持几分钟,只能用作临时性保护机制,接近冰点的低温下若没有像奔跑这样的剧烈运动来平衡,人体很快会陷入低温症(hypothermia),数小时内即可导致死亡。 但我们不可能时刻在奔跑,即便运动系统吃得消,上述消化瓶颈也不允许我们摄入持续高代谢率所需能量;某些恒温动物发展出了冬眠机制,像土拨鼠,或者半冬眠,像棕熊,因而变得不那么恒温了,而像人类这样的绝对恒温动物要在温带和寒带生存,必须找出一些保温措施,要么是生理上的,像北极狐的厚实皮毛,或像海狮厚达10厘米的皮下脂肪,要么是外部措施,构筑巢穴,挖掘地洞,或寻找自然洞穴(山洞或树洞)。 人类也有一些应对寒冷的生理改变,高加索人种的窄长鼻道和浅肤色,蒙古人种的内眦赘皮、细眼缝、扁平脸庞、较厚的面部脂肪,以及高纬度族群普遍偏高的体脂率,但和其他动物不同的是,人类更多依靠非生理方案。 首先是衣服,热力工程学家开发了一套用于测量衣服、被褥、建筑物等装备设施之保温效果的指标,其中衣着指数(clo)用于衣服,只须穿上0.5clo衣服(短袖T恤+七分裤+拖鞋),理想气温即可降至27℃,穿上1.0clo(衬衫+夹克+长裤+鞋袜,皆为单层)时,理想气温24℃,1.5clo大致相当于秋衣,对应理想气温21℃。 四万多年前智人向北深入欧亚腹地时,正值冰期,此后三万年他们都生活在靠近冰川线或冻原的极寒地带,若非开发出了像因纽特人那样保暖效果极佳的厚实衣服,他们是熬不过两万多年前的末次盛冰期(Last Glacial Maximum)的,尼安德特人恰灭绝于此时,而我们祖先不仅熬过了末次盛冰期,还取得了扩张。 兴盛于该时期的格拉维特人(Gravettians)甚至进入了喀尔巴阡以北的波兰平原,不像比利牛斯或阿尔卑斯两麓,那里是没有众多洞穴可供藏身的,他们依靠的是另一项保温技术:房屋;通过挖掘地穴,以猛犸象肋骨做梁柱,搭成屋顶,盖上兽皮和草皮,可建成保温效果极好的半地下房屋,就像因纽特人在北极地区所为。 房屋若配以炉灶则效果更好,户外篝火只有靠得很近时才管点用,而密封良好的小屋内只须一炉小火(因纽特人仅用一盏油灯)即可将室内加热至理想温度附近;直至今天,建筑、外部热源、衣服这保温三件套仍是我们赖以对付寒冷的主要手段。 寄生虫 头虱、阴虱、跳蚤、螨虫,已伴随人类数百万年,不仅传播疾病,也窃取着我们好不容易摄入的大量营养,除了体外寄生虫,还有体内的蛔虫、绦虫、钩虫、线虫、锥虫、血吸虫……以及千百种有害菌,除了被窃取的营养,免疫系统与之作战也带来了巨大能量开销,感染寄生虫可让代谢率上升数十个百分点。 定居农业导致的人口高密度和人畜共居大幅加重了寄生虫施于人体的代谢负担,然而近代卫生医疗状况的改善,又在短短数十年内(至少在富裕人群中)大规模清除了人体寄生虫,这一迅疾改变对能量均衡等式的影响或许不亚于精细食物、厚实衣服,以及家务负担的减轻。 生育 怀孕期间女性每天额外消耗465卡能量,哺乳更高,每天625-700卡,狩猎采集者通常哺乳三到四年,农牧业者借助牛奶等替代品常将哺乳期缩短至半年以内,而当代配方奶粉则让母亲们有机会完全解除哺乳负担。 这一改变不算大,然而和前文所述的种种改变一样,全都指向一个方向:尽管人类个体依然强壮有力,甚至比以前更有能力进行各种大功率高能耗活动,但人体本身需要摄入和实际消耗的能量,都越来越少了。   参考资料 Richard Wrangham: Catching Fire (2009) Nancy Howell: Life Histories of the Dobe !Kung (2010) Robert L. Bettinger: Orderly Anarchy (2015) Ann E. Caldwell: Human Physical Fitness and Activity (2016) Robert McGhee: The Last Imaginary Place (2005) Brian Fagan: Cro-Magnon (2010) Wikipedia: Basal metabolic rate Wikipedia: Food energy Wikipedia: Atwater system Wikipedia: Clothing insulation Wikipedia: Thermal comfort VIVO Pathophysiology: Gastrointestinal Transit: How Long Does It Take? http://www.vivo.colostate.edu/hbooks/pathphys/digestion/basics/transit.html Engineering ToolBox: Clothing, Activity and Human Metabolism https://www.engineeringtoolbox.com/metabolism-clothing-activity-d_117.html      
战争与精子

【2017-08-31】

综合185份研究的数据显示,1973-2011年间,西方世界男性平均精子产量下降59.3%,浓度下降52.4%,这很明显是西方社会整体阴柔化的生理表现。

或许并非巧合的是,这四十年西方各国没有经历任何重大战争,在此期间经历过大战(或越战之类中型战争)的人口逐渐被未经历任何战争的人口替代。

说起战争与文化的关系,想到另一件事情,美国四次大觉醒运动的后三次,完美对应三次重大战争:独立战争,内战,二(more...)

标签: | | |
7645
【2017-08-31】 综合185份研究的数据显示,1973-2011年间,西方世界男性平均精子产量下降59.3%,浓度下降52.4%,这很明显是西方社会整体阴柔化的生理表现。 或许并非巧合的是,这四十年西方各国没有经历任何重大战争,在此期间经历过大战(或越战之类中型战争)的人口逐渐被未经历任何战争的人口替代。 说起战争与文化的关系,想到另一件事情,美国四次大觉醒运动的后三次,完美对应三次重大战争:独立战争,内战,二战,分别延迟15-20年,正好是一代新人成长起来所需要的时间.  
迟来的花粉过敏

【2017-01-16】

听说不少人来澳洲五六年之后开始出现花粉过敏,为什么是五六年后而不是马上?我猜是因为空气太干净,免疫系统过度拉低了反应阈值,所以,墙内兄弟们,吸点雾霾也不是完全没好处~ ​​​​

 

标签: | |
7750
【2017-01-16】 听说不少人来澳洲五六年之后开始出现花粉过敏,为什么是五六年后而不是马上?我猜是因为空气太干净,免疫系统过度拉低了反应阈值,所以,墙内兄弟们,吸点雾霾也不是完全没好处~ ​​​​  
静息心率

【2016-06-11】

@北京大学出版社 黑手党杀手喜欢装出一副若无其事的样子,出其不意地对目标发动攻击,并且大多是从背后出手,主要也是为了避免发生正面冲突。这也是为什么刽子手曾经会佩戴面罩,以及为什么蒙面者会比其他人作出更多的暴力行为。《暴力:一种微观社会学理论》书摘一 http://t.cn/R5M6G6B

@黄章晋ster: 「只要能够获得情绪上的支配权,就能获得身体上的支配权。例如其中一方在对方毫无还手之力时仍然对其大打出手。一方因其心跳超过每分钟200次而动弹不得,另一方则将(more...)

标签: | | |
7207
【2016-06-11】 @北京大学出版社 黑手党杀手喜欢装出一副若无其事的样子,出其不意地对目标发动攻击,并且大多是从背后出手,主要也是为了避免发生正面冲突。这也是为什么刽子手曾经会佩戴面罩,以及为什么蒙面者会比其他人作出更多的暴力行为。《暴力:一种微观社会学理论》书摘一 http://t.cn/R5M6G6B @黄章晋ster: 「只要能够获得情绪上的支配权,就能获得身体上的支配权。例如其中一方在对方毫无还手之力时仍然对其大打出手。一方因其心跳超过每分钟200次而动弹不得,另一方则将其心跳维持在每分钟14 @whigzhou: 年初有份对巴西街头帮派的研究据说显示了静息心率与青少年暴力之间的关系 http://t.cn/R5xquwG @whigzhou: 搜了一下,90年代已经有相关研究,见Fiona Brookman: Understanding Homicide(2005) p.65 http://t.cn/R5xqsxf @whigzhou: 所以音乐和舞蹈可能也是一种控制心率(或肾上腺素的其他负面效果)的方法 http://weibo.com/5655200015/DfcFL4iON @whigzhou: 我记得有些印第安部落有着残忍虐待俘虏并以此取乐的习惯,可能也是在训练战士克服与敌人面对面时的情绪波动。 @innesfry: 低静息心率已被证明是与反社会行为和犯罪最相关的生理特征。邮包炸弹客卡辛斯基的静息心率是54。低静息心率对反社会行为的预测能力跟SAT分数对大学GPA的预测能力差不多  
[译文]为什么你会讨厌自己的声音

Why you probably hate the sound of your own voice
为什么你可能会讨厌自己的声音

作者:Rachel Feltman @ 2015-6-16
译者:Marcel ZHANG(微博:@马赫塞勒张)
校对:沈沉(@你在何地-sxy)
来源:The Washington Post,https://www.washingtonpost.com/news/speaking-of-science/wp/2015/06/16/why-you-probably-hate-the-sound-of-your-own-voice/

Whether you’ve heard yourself talking on the radio or just gabbing in a friend’s Instagram video, you probably know the sound of your own voice — and chances are pretty good that you hate it.

不论是通过听到自己在广播上讲话,或是在朋友的Instagram视频里闲聊,你可能都已经了解了自己的声音,而且你很可能并不喜欢这个声音。

As the video above explains, your voice as you hear it when you speak out loud is very different from the voice the rest of the world perceives. That(more...)

标签: | |
6967
Why you probably hate the sound of your own voice 为什么你可能会讨厌自己的声音 作者:Rachel Feltman @ 2015-6-16 译者:Marcel ZHANG(微博:@马赫塞勒张) 校对:沈沉(@你在何地-sxy) 来源:The Washington Post,https://www.washingtonpost.com/news/speaking-of-science/wp/2015/06/16/why-you-probably-hate-the-sound-of-your-own-voice/ Whether you've heard yourself talking on the radio or just gabbing in a friend's Instagram video, you probably know the sound of your own voice -- and chances are pretty good that you hate it. 不论是通过听到自己在广播上讲话,或是在朋友的Instagram视频里闲聊,你可能都已经了解了自己的声音,而且你很可能并不喜欢这个声音。 As the video above explains, your voice as you hear it when you speak out loud is very different from the voice the rest of the world perceives. That's because it comes to you via a different channel than everyone else. 你在你大声讲话时自己听到的声音跟其他人听到的大不相同。那是因为声音传播给其他人和传播给你自己所通过的是不同的途径。 When sound waves from the outside world -- someone else's voice, for example -- hit the outer ear, they're siphoned straight through the ear canal to hit the ear drum, creating vibrations that the brain will translate into sound. 当从外界传来的声波(比如其他人发出的声音)抵达外耳时,鼓膜会直接通过耳道将其接收并产生震动,再由大脑将这些震动转化为声音。 When we talk, our ear drums and inner ears vibrate from the sound waves we're putting out into the air. But they also have another source of vibration -- the movements caused by the production of the sound. Our vocal cords and airways are trembling, too, and those vibrations make their way over to auditory processing as well. 当我们讲话时,我们的鼓膜和内耳会因我们向空气中发出的声波而产生震动。但是他们还有其他的震动源,那就是发声时触发的动作。我们的声带和气道也在颤动,而且这些震动也同样参与到了听觉进程当中。 Your body is better at carrying low, rich tones than the air is. So when those two sources of sound get combined into one perception of your own voice, it sounds lower and richer. That's why hearing the way your voice sounds without all the body vibes can be off-putting -- it's unfamiliar -- or even unpleasant, because of the relative tininess. 你的身体比空气更容易传递低沉浑厚的声调。所以,当两种声源合并成为了你对自己声音的感知时,它听起来会相对更加低沉浑厚。这就是为什么你听到自己没有通过身体共鸣的声音会感到反感、陌生甚至是厌恶了,因为那声音相对更单薄。 The sound of your own voice isn't the only place where daily perception can butt up against the ugly truth: We often feel uncomfortable when we see our bodies as other people see them, too. 你自己的声音并不是日常认知与丑陋现实针锋相对的唯一情形。当我们以其他人看我们的方式看到自己的身体时,时常也会觉得有点难受。 Think about it: Chances are good that most of the times that you look at yourself, it's thanks to a mirror or some other reflective surface. But those are mirror images -- our bodies are flipped. Because most faces are pretty asymmetrical (under close observation, anyway), a flip can create really jarring changes. That's why you might wince at photos that show the real you instead of a mirror image. 大家可以想一下,我们要看到自己,大多数情况基本都要借助镜子或者其他反射面。但这些都是镜像,我们的身体是经过翻转的。因为大多数的人脸都是不太对称的(反正在近距离观察下就是这样的),所以一个翻转就能造成令人不快的差别。这就是为什么你在照片中看到真正的自己而不是镜像时可能会眉头紧蹙了。 “We see ourselves in the mirror all the time—you brush your teeth, you shave, you put on makeup,” Pamela Rutledge, director of the Media Psychology Center, told The Atlantic. “Looking at yourself in the mirror becomes a firm impression. You have that familiarity. Familiarity breeds liking. You’ve established a preference for that look of your face.” 媒体心理学研究中心(Media Psychology Center)主任帕梅拉·拉特利奇在接受《大西洋月刊》采访时说:“我们时常都会在镜子里看到自己,比如刷牙、剃须和化妆的时候。故而镜中的自己就变成了一种固定印象。那么你就会对其产生熟悉感,久而久之这种熟悉感就会催生出喜爱之情,这样一来你便确立了对自己的那种形象的偏爱。” So it should come as no surprise that being reminded that our faces -- and voices -- are slightly different than we think them to be can be a bit unnerving. 所以,当我们想起来我们的形象和声音与我们印象中的不太一致时,也难怪会感到有点懊恼。 (编辑:辉格@whigzhou) *注:本译文未经原作者授权,本站对原文不持有也不主张任何权利,如果你恰好对原文拥有权益并希望我们移除相关内容,请私信联系,我们会立即作出响应。

——海德沙龙·翻译组,致力于将英文世界的好文章搬进中文世界——

[译文]人类听力的进化

Testing ancient human hearing via fossilized ear bones
利用耳骨化石测量古人听力

作者:Rolf Quam @ 2015-9-26
译者:沈沉(@你在何地-sxy)
校对:Whig Zhou(@whigzhou)
来源:The Conversation,https://theconversation.com/testing-ancient-human-hearing-via-fossilized-ear-bones-47973

How did the world sound to our ancient human relatives two million years ago?

整个世界在我们200万年前的人族亲戚听来是个什么样子?

While we obviously don’t have any sound recordings or written records from anywhere near that long ago, we do have one clue: the fossilized bones from inside their ears. The internal anatomy of the ear influences its hearing abilities.

显然,我们并没有那么久以前留下来的录音资料或书面记录,但我们确实拥有一条线索:古人耳内的骨头化石。耳朵的内部构造能够影响其听觉能力。

Using CT scans and careful virtual reconstructions, my international colleagues and I think we’ve demonstrated how our very ancient ancestors heard the world. And this isn’t just an academic enterprise; hearing abilities are closely tied with verbal communication.

经CT扫描并精心进行虚拟重构之后,我和一些国际同僚认为,我们已经展示出了远古先人是如何听到这个世界的。这可不仅仅是一项学术事业,因为听觉能力与口头交流是密切相关的。

By figuring out when certain hearing capacities emerged during our evolutionary history, we might be able to shed some light on when spoken language started to evolve. That’s one of the most hotly debated questions in paleoanthropology, since many researchers consider the capacity for spoken language a defining human feature.

通过估计特定听觉能力在人类进化史上何时出现,我们就可能对口头语言何时开始进化有所了解。这是古人类学目前争论最为火热的问题之一,因为许多研究者认为口语能力是一项用来定义人类的特征。

Human hearing is unique among primates
人类听觉在灵长类中非常独特

We modern human beings have better hearing across a wider range of frequencies (more...)

标签: | |
6860
Testing ancient human hearing via fossilized ear bones 利用耳骨化石测量古人听力 作者:Rolf Quam @ 2015-9-26 译者:沈沉(@你在何地-sxy) 校对:Whig Zhou(@whigzhou) 来源:The Conversation,https://theconversation.com/testing-ancient-human-hearing-via-fossilized-ear-bones-47973 How did the world sound to our ancient human relatives two million years ago? 整个世界在我们200万年前的人族亲戚听来是个什么样子? While we obviously don’t have any sound recordings or written records from anywhere near that long ago, we do have one clue: the fossilized bones from inside their ears. The internal anatomy of the ear influences its hearing abilities. 显然,我们并没有那么久以前留下来的录音资料或书面记录,但我们确实拥有一条线索:古人耳内的骨头化石。耳朵的内部构造能够影响其听觉能力。 Using CT scans and careful virtual reconstructions, my international colleagues and I think we’ve demonstrated how our very ancient ancestors heard the world. And this isn’t just an academic enterprise; hearing abilities are closely tied with verbal communication. 经CT扫描并精心进行虚拟重构之后,我和一些国际同僚认为,我们已经展示出了远古先人是如何听到这个世界的。这可不仅仅是一项学术事业,因为听觉能力与口头交流是密切相关的。 By figuring out when certain hearing capacities emerged during our evolutionary history, we might be able to shed some light on when spoken language started to evolve. That’s one of the most hotly debated questions in paleoanthropology, since many researchers consider the capacity for spoken language a defining human feature. 通过估计特定听觉能力在人类进化史上何时出现,我们就可能对口头语言何时开始进化有所了解。这是古人类学目前争论最为火热的问题之一,因为许多研究者认为口语能力是一项用来定义人类的特征。 Human hearing is unique among primates 人类听觉在灵长类中非常独特 We modern human beings have better hearing across a wider range of frequencies than most other primates, including chimpanzees, our closest living relative. Generally, we’re able to hear sounds very well between 1.0-6.0 kHz, a range that includes many of the sounds emitted during spoken language. Most of the vowels fall below about 2.0 kHz, while the higher frequencies mainly contain consonants. 与绝大多数灵长动物(包括与我们血缘最近的近亲黑猩猩)相比,现代人在一个更大的频率区间内拥有更好的听力。一般来说,我们能够很好地听清1.0-6.0千赫之间的声音,口语交流时发出的许多声音就处于这一区间内。绝大多数元音大概落在2.0千赫以下,更高的频率则主要包含辅音。 Thanks to testing of their hearing in the lab, we know that chimpanzees and most other primates aren’t as sensitive in that same range. Chimpanzee hearing – like most other primates who also live in Africa, including baboons – shows a loss in sensitivity between 1.0-4.0 kHz. In contrast, human beings maintain good hearing throughout this frequency range. 基于实验室的听力测量,我们知道黑猩猩和绝大多数其他灵长动物对于上述频率区间并没有这么敏感。黑猩猩的听力在1.0-4.0千赫区间内丧失了敏感性,其他绝大多数生活于非洲的灵长动物也是如此,包括狒狒。人类与之不同,在这一频率区间内仍然能有很好的听力。 We’re interested in finding out when this human hearing pattern first emerged during our evolutionary history. In particular, if we could find a similar pattern of good hearing between 1.0-6.0 kHz in a fossil human species, then we could make an argument that language was present. 我们的兴趣是想要找出人类的这种听觉模式在进化史上最早出现于何时。特别是,如果我们能从某个人类化石上面找到在1.0-6.0千赫之间拥有良好听力这种类似模式,那么我们就可以论证说语言已经存在。 Testing the hearing of a long-gone individual 测量远古人类的听力 To study hearing using fossils, we measure a large number of dimensions of the ancient ears – including the length of the ear canal, the size of the ear drum and so on – using virtual reconstructions of the fragile skulls on the computer. Then we input all these data into a computer model. 使用化石来测量听力,我们需要在电脑上对易碎的头骨进行虚拟重构,然后测量古人耳朵的许许多多指标,包括耳道长度、耳膜大小等等。然后我们将所有这些数据都输入一个电脑模型之中。 Published previously in the bioengineering literature, the model predicts how a person hears based on his ear anatomy. It studies the capacity of the ear as a receiver of a signal, similar to an antenna. The results tell us how efficiently the ear transmits sound energy from the environment to the brain. 这个模型此前已经在生物工程文献中发表,能够根据一个人的耳朵构造预测其听力。它研究了耳朵作为与天线类似的信号接收器的能力,其结果能告诉我们耳朵将周围环境中的声能传输到大脑的效率。 We first tested the model on chimpanzee skulls, and got results similar to those of researchers who tested chimpanzee hearing in the lab. Since we know the model accurately predicts how humans hear and how chimpanzees hear, it should provide reliable results for our fossil human ancestors as well. 我们在黑猩猩头骨上面检验了这个模型,得到的结果与研究人员在实验室得到的黑猩猩听力相似。因此,我们知道这个模型能够准确预测人类听力和黑猩猩听力,所以将它应用于古人化石上面,也应该能够为我们提供可靠的结论。 What do the fossils tell us? 化石告诉了我们什么? Previously, we studied the hearing abilities in several fossil hominin individuals from the site of the Sima de los Huesos (Pit of the Bones) in northern Spain. These fossils are about 430,000 years old, and anthropologists consider them to represent ancestors of the later Neanderthals. Based on ear bone measurements we took, the computer model calculated that hearing abilities in the Sima hominins were nearly identical to living humans in showing a broad region of good hearing. 此前,我们已经研究过西班牙北部“胡瑟裂谷”(西班牙语意为“骨坑”)遗址的几个古人类化石的听觉能力。这些化石大概是43万年前的,人类学家认为他们代表了晚期尼安德特人的祖先。基于我们所进行的耳骨测量,电脑模型计算出“裂谷”古人类的听觉能力与现存人类的几近相同,都在很大范围内表现出良好听力。 In our current study published in Science Advances, we worked with much earlier hominin individuals, representing the species Australopithecus africanus and Paranthropus robustus. These fossils were excavated at the sites of Sterkfontein and Swartkrans in South Africa, and likely date to around two million years ago. 在发表于《科学进展》上的最新研究中,我们研究了更为远古的古人类,即非洲南猿和傍人粗壮种。这些化石是在南非的斯特克方藤和斯沃特兰斯遗址发掘出来的,很可能存活于约200万年以前。 image-20150923-2626-3ujn1b Auditory sensitivity between 0.5-5.0 kHz for chimpanzees, humans and the early hominins. Points higher on the curve indicate greater auditory sensitivity. (A) Region of maximum sensitivity. The early hominins are shifted toward slightly higher frequencies compared with chimpanzees. (B) Hearing results. The early hominins are more sensitive than either chimpanzees or humans up to around 3 kHz. Above around 3.5 kHz, the early hominins resemble chimpanzees more closely in showing a drop-off in sensitivity. 黑猩猩、人类和早期古人类在0.5-5.0千赫之间的听觉敏感度。曲线中更高的点代表更高的听觉敏感度。(A)代表敏感度最高区间。与黑猩猩相比,早期古人类的对应区间向更高频率略有偏移。(B)代表听力结果。在约3千赫之前,早期古人类的敏感度既高于黑猩猩,也高于人类。在高于3.5千赫的区间,早期古人类更接近黑猩猩,表现出敏感度的下降。 When we measured their ear structures and modeled their hearing, we found they had a hearing pattern that was more similar to a chimpanzee – but slightly modified in the human direction. In fact, these early hominins showed better hearing than either chimpanzees or modern humans from about 1.0-3.0 kHz, and the region of best hearing was shifted toward slightly higher frequencies compared with chimpanzees. 在测量了他们的耳朵构造并用模型计算了其听力以后,我们发现他们的听觉模式更接近于黑猩猩,但朝人类的方向略有修正。事实上,在1.0-3.0千赫区间,这些早期古人类的听力比黑猩猩或现代人的都要好。而且与黑猩猩相比,他们的最佳听力区间向高频率方向略有偏移。 It turns out this auditory pattern may have been a particular advantage for living on the savanna. We know A. africanus and and P. robustus regularly occupied the savanna, since as much as half of their diet was made up of resources found in open environments, based on measurements of isotopes in their teeth. 原来,对于稀树大草原上的生活而言,这种听力模式可能别有优势。我们知道,非洲南猿和傍人粗壮种经常会生活在稀树大草原上,因为他们的食谱有一半来自于开阔环境中才能找到的资源,而这是对他们牙齿中的同位素进行测量后发现的。 In more open environments, sound waves don’t travel as far as they do in the rain forest canopy. Sound signals tends to fade out sooner, and short-range communication is favored on the savanna. The hearing pattern of these early hominins – greater sensitivity than humans or chimpanzees to frequencies between 1.0-3.0 kHz and maximum sensitivity at slightly higher frequencies than in chimps – that would work well in these conditions. 在更为开阔的环境中,声波传播不到热带雨林密林中那么远。声音信号消逝更快,因此在稀树大草原上短程交流更受喜爱。在这种环境中,这些早期古人类的听觉模式(在1.0-3.0千赫的频率区间中比黑猩猩或现代人更敏感,且敏感度最高区间的对应频率比黑猩猩要稍高一些)相当适用。 From hearing to talking 从听到说 A. africanus and P. robustus had hearing abilities similar to a chimpanzee, but with some slight differences in the direction of humans. 非洲南猿和傍人粗壮种的听觉能力与黑猩猩近似,同时向人类的方向略有偏差。 There is a general consensus among anthropologists that the small brain size and ape-like cranial anatomy and vocal tract in these early hominins indicates they likely did not have the capacity for language. 人类学家中存在一个普遍共识:这些早期古人类的大脑尺寸较小、颅骨构造和声道更像猿,表明他们很可能并不具备语言能力。 My colleagues and I aren’t arguing that these early hominins had language, with its implications of symbolic content. They certainly could communicate vocally, though. All primates do, and many species regularly emit a variety of vocalizations including grunts, screams, howls and so on. 我和同僚并不是争论说这些早期古人类拥有语言,因为语言包含有符号性内容这层意思。但是,他们肯定能够进行口头交流。所有灵长动物都能做到这一点,而且许多物种还能经常性地发出各种不同的声音,包括咕噜、尖叫、咆哮等等。 But these South African fossils have given us another hearing data point as we try to puzzle out the emergence of language. Two million years ago, it looks like they didn’t have language. But 430,000 years ago, it looks like the Sima de los Huesos hominins did. We suspect that sometime between these early South African forms and the later more human-like forms from the Sima, language emerged. Now we just need to narrow that window. 但在我们尝试解答语言起源的难题时,南非的这些化石给我们提供了另外一组听力数据论点。200万年前,他们似乎还没有语言。但43万年前,似乎“胡瑟裂谷”的古人类已经拥有语言了。我们估计,大概在这些早期南非种和更晚的更像人类的“裂谷”种之间的某个时候,语言就出现了。现在,我们只需要把这个窗口期进一步缩短。 We hope to continue this kind of work on hearing patterns in different groups of ancient hominins from various places and time periods. The discovery of a new hominin species, Homo naledi, announced just a couple of weeks ago from a different site in South Africa, underscores how much there is left to uncover. 我们希望把这项工作继续做下去,研究来自不同地区和时期的不同古人类群体的听觉模式。仅在数周之前,南非另外一个遗址又宣布发现了一种新的古人类物种,即纳勒迪人。这一发现凸显了我们还有多少事情需要去发现。 (编辑:辉格@whigzhou) *注:本译文未经原作者授权,本站对原文不持有也不主张任何权利,如果你恰好对原文拥有权益并希望我们移除相关内容,请私信联系,我们会立即作出响应。

——海德沙龙·翻译组,致力于将英文世界的好文章搬进中文世界——

[译文]饿怒症:为何有些人饿了就会暴躁

Health Check: the science of ‘hangry’, or why some people get grumpy when they’re hungry
健康检查:“饿怒症”科学,或为什么有些人饿了以后会暴躁

作者:Amanda Salis @ 2015-7-20
译者:黎安林
校对:沈沉(@你在何地-sxy)
来源:The Conversation,https://theconversation.com/health-check-the-science-of-hangry-or-why-some-people-get-grumpy-when-theyre-hungry-37229

There are many reasons why some people get very grumpy when they haven’t eaten for a while.

有些人一段时间没吃东西就变得非常暴躁,这有很多原因。

Have you ever snapped angrily at someone when you were hungry? Or has someone snapped angrily at you when they were hungry? If so, you’ve experienced “hangry” (an amalgam of hungry and angry) – the phenomenon whereby some people get grumpy and short-tempered when they’re overdue for a feed.

你曾在饥肠辘辘时愤怒地呵斥过某人吗?或者,你曾被某人在饥饿时愤怒地呵斥过吗?如果有,你就体验过“饿怒症”(一种饥饿和愤怒的混合体)——即有些人过了吃饭时间没吃东西就会变得暴躁易怒的现象。

But where does hanger come from? And why is it that only some people seem to get hangry? The answer lies in some of the processes that happen inside your body when it needs food.

但是饿怒来自哪里?为什么只是一部分人会饿怒?答案就在你身体需要食物时发生在体内的过程中。

The physiology of hanger
饿怒的生理学

The carbohydrates, proteins and fats in everything you eat are digested into simple sugars (such as glucose), amino acids and free fatty acids. These nutrients pass into your bloodstream from where they are distributed to your organs and tissues and used for energy.

你吃的所有食物中的碳水化合物、蛋白质和脂肪,都被消化成单糖(如葡萄糖)、氨基酸和游离脂肪酸。这些营养物质首先进入你的血液,然后从哪里被分配到你的器官和组织,并用作能量来源。

As time passes after your last meal, the amount of these nutrients circulating in your bloodstream starts to drop. If your blood-glucose levels fall far enough, your brain will perceive it as a life-threatening situation. You see, unlike most other organs and tissues in your body which can use a variety of nutrients to keep functioning, your brain is critically dependent on glucose to do its job.

在你上一次饭后,随着时间流逝,这些在你的血液中循环的营养物质的量开始下降。如果你的血糖水平过低,你的大脑就会把它理解为危及生命的情况。你知道,不像你体内的大多数其他器官和组织,它们可以使用种类繁多的营养物质来保持运转,你的大脑却严重依赖葡萄糖来完成其工作。

You’ve probably already noticed this dependence your brain has on glucose; simple things can become difficult when you’re hungry and your blood glucose levels drop. You may find it hard to concentrate, for instance, or you may make silly mistakes. Or you might have noticed that your words become muddled or slurred.

你可能已经注意到了这种大脑对葡萄糖的依赖;当你饿了,身体的血糖水平下降,简单的事情也会变得困难。比如,你会感到注意力难以集中,或者可能犯一些低级的错误。或者你可能已经注意到,你说话变得混乱而含糊不清。

标签: |

6135
Health Check: the science of ‘hangry’, or why some people get grumpy when they’re hungry 健康检查:“饿怒症”科学,或为什么有些人饿了以后会暴躁 作者:Amanda Salis @ 2015-7-20 译者:黎安林 校对:沈沉(@你在何地-sxy) 来源:The Conversation,https://theconversation.com/health-check-the-science-of-hangry-or-why-some-people-get-grumpy-when-theyre-hungry-37229 There are many reasons why some people get very grumpy when they haven’t eaten for a while. 有些人一段时间没吃东西就变得非常暴躁,这有很多原因。 Have you ever snapped angrily at someone when you were hungry? Or has someone snapped angrily at you when they were hungry? If so, you’ve experienced “hangry” (an amalgam of hungry and angry) – the phenomenon whereby some people get grumpy and short-tempered when they’re overdue for a feed. 你曾在饥肠辘辘时愤怒地呵斥过某人吗?或者,你曾被某人在饥饿时愤怒地呵斥过吗?如果有,你就体验过“饿怒症”(一种饥饿和愤怒的混合体)——即有些人过了吃饭时间没吃东西就会变得暴躁易怒的现象。 But where does hanger come from? And why is it that only some people seem to get hangry? The answer lies in some of the processes that happen inside your body when it needs food. 但是饿怒来自哪里?为什么只是一部分人会饿怒?答案就在你身体需要食物时发生在体内的过程中。 The physiology of hanger 饿怒的生理学 The carbohydrates, proteins and fats in everything you eat are digested into simple sugars (such as glucose), amino acids and free fatty acids. These nutrients pass into your bloodstream from where they are distributed to your organs and tissues and used for energy. 你吃的所有食物中的碳水化合物、蛋白质和脂肪,都被消化成单糖(如葡萄糖)、氨基酸和游离脂肪酸。这些营养物质首先进入你的血液,然后从哪里被分配到你的器官和组织,并用作能量来源。 As time passes after your last meal, the amount of these nutrients circulating in your bloodstream starts to drop. If your blood-glucose levels fall far enough, your brain will perceive it as a life-threatening situation. You see, unlike most other organs and tissues in your body which can use a variety of nutrients to keep functioning, your brain is critically dependent on glucose to do its job. 在你上一次饭后,随着时间流逝,这些在你的血液中循环的营养物质的量开始下降。如果你的血糖水平过低,你的大脑就会把它理解为危及生命的情况。你知道,不像你体内的大多数其他器官和组织,它们可以使用种类繁多的营养物质来保持运转,你的大脑却严重依赖葡萄糖来完成其工作。 You’ve probably already noticed this dependence your brain has on glucose; simple things can become difficult when you’re hungry and your blood glucose levels drop. You may find it hard to concentrate, for instance, or you may make silly mistakes. Or you might have noticed that your words become muddled or slurred. 你可能已经注意到了这种大脑对葡萄糖的依赖;当你饿了,身体的血糖水平下降,简单的事情也会变得困难。比如,你会感到注意力难以集中,或者可能犯一些低级的错误。或者你可能已经注意到,你说话变得混乱而含糊不清。 image-20150721-24295-b4eb5u改 Another thing that can become more difficult when you’re hungry is behaving within socially acceptable norms, such as not snapping at people. So while you may be able to conjure up enough brain power to avoid being grumpy with important colleagues, you may let your guard down and inadvertently snap at the people you are most relaxed with or care most about, such as partners and friends. Sound familiar? 当你饿了,可能变得更加困难的另一件事情是行为举止符合社会可接受的规范,比如不呵斥人。虽然你可能唤起足够脑力来避免和重要同事相处时出现暴躁,但是在对待如伴侣、朋友等最令人放松或者最在乎的人时,你可能放松警惕,无意识地呵斥他们。是不是听起来很熟悉? Another bodily response 另一种身体反应 Besides a drop in blood-glucose concentrations, another reason people can become hangry is the glucose counter-regulatory response. Let me explain. 除了血糖浓度的下降,另一个让人饿怒的原因是葡萄糖反馈调节反应。让我解释一下。 When blood-glucose levels drop to a certain threshold, your brain sends instructions to several organs in your body to synthesise and release hormones that increase the amount of glucose in your bloodstream. 当血糖水平下降到一定阈值,大脑会向你身体的几个器官发出指令来合成和释放特定激素,以增加血液中的葡萄糖含量。 The four main glucose counter-regulatory hormones are: growth hormone from the pituitary gland situated deep in the brain; glucagon from the pancreas; and adrenaline, which is sometimes called epinephrine, and cortisol, which are both from the adrenal glands. These latter two glucose counter-regulatory hormones are stress hormones that are released into your bloodstream in all sorts of stressful situations, not just when you experience the physical stress of low blood-glucose levels. 四种主要的葡萄糖反馈调节激素是:位于大脑深处的脑垂体释放的生长激素;胰腺产生的胰高血糖素;肾上腺素和皮质醇,它们都是从肾上腺产生的。后两个葡萄糖反馈调节激素是在各种紧张的情况下(不只是在遭受低血糖水平的生理压力时)释放到血液中的应激激素。 In fact, adrenaline is one of the major hormones released into your bloodstream with the “fight or flight” response to a sudden scare, such as when you see, hear or even think something that threatens your safety. Just as you might easily shout out in anger at someone during the “fight or flight” response, the flood of adrenaline you get during the glucose counter-regulatory response can promote a similar response. 事实上,肾上腺素是当你遭受突然的惊吓,如看到、听到甚至想到有什么东西威胁你的安全,从而作出“战斗或逃跑”反应时,被释放到血液中的主要激素之一。正如你可能很容易在“战斗或逃跑”应激场景中对某人愤怒地咆哮,你在葡萄糖反馈调节反应中产生的大量肾上腺素也可能促发类似的反应。 Nature and nurture 先天和后天 Another reason hunger is linked to anger is that both are controlled by common genes. The product of one such gene is neuropeptide Y, a natural brain chemical released into the brain when you are hungry. It stimulates voracious feeding behaviours by acting on a variety of receptors in the brain, including one called the Y1 receptor. 饥饿与愤怒有关的另一个原因是,两者都被共同的基因所控制。其中一个基因的产物是神经肽Y,这是当你饿了时释放给大脑的脑内天然化学物质。它通过作用于大脑中多种受体,其中一个叫Y1受体,来刺激贪婪的取食行为。 image-20150721-24261-1i4fvd9 (1)改 Besides acting in the brain to control hunger, neuropeptide Y and the Y1 receptor also regulate anger or aggression. In keeping with this, people with high levels of neuropeptide Y in their cerebrospinal fluid also tend to show high levels of impulse aggression. 神经肽Y和Y1受体除了作用于大脑以控制饥饿感之外,还能调节愤怒或攻击性。与此一致,当人的脑脊液中神经肽Y水平高时,往往表现出高水平的攻击冲动。 As you can see, there are several pathways that can make you prone to anger when you’re hungry. Hanger is undoubtedly a survival mechanism that has served humans and other animals well. Think about it like this: if hungry organisms stood back and graciously let others eat before them, their species could die out. 正如你所看到的,当你饿了时,有几个途径可以使你易怒。饿怒无疑是作用于人类和其他动物的一种生存机制。这样想想看:如果饿了的生物靠后站,慷慨地让别人在他们头前吃东西,他们的物种将消亡。 While many physical factors contribute to hanger, psychosocial factors also have a role. Culture influences whether you express verbal aggression directly or indirectly, for instance. 虽然有许多物理因素能导致饿怒,社会心理因素也有一定作用。例如,文化能够影响你是直接还是间接地表达言语攻击。 And as we are all different across all of these factors, it’s little wonder there are differences in how angry people seem to get when they’re hungry. 并且,由于人们在所有这些因素上都有所不同,很自然地,当他们饥饿时,他们愤怒的程度也有所不同。 Dealing with hanger 克服饿怒 The easiest way to handle hanger is to eat something before you get too hungry. While you may hanker for quick-fix foods, such as chocolate and potato chips, when you’re in the throes of hanger, junk foods generally induce large rises in blood-glucose levels that come crashing down fast. 应对饿怒的最简单方法是在你太饿之前吃东西。当你在饿怒中挣扎时,你可能会想吃些速战速决的食物,如巧克力和薯片,垃圾食品普遍能促使血糖水平大幅提升,但下降得也非常快。 image-20150721-24304-be3mpa (1)改 Ultimately, they may leave you feeling hangrier. So think nutrient-rich, natural foods that help satisfy hunger for as long as possible, without excess kilojoules. 最终,他们可能会让你感到更加饿怒。因此,还是考虑食用营养丰富的天然食品,它们可以尽可能久地给你充饥,且没有多余的能量。 Eating as soon as you are hungry may not always be possible. This may be the case during long shifts at work, for instance, or through religious fasts such as Ramadan, or during weight-loss diets that involve severe energy restriction (such as intermittent fasting diets). All of these should only be done if your doctor has given you the all-clear. 你未必总是能够一饿就立即吃东西。比如,这可能是由工作中的轮班时间很长导致的,或者由宗教斋戒如斋月导致,或正处于严格限制热量的减肥节食(如间歇性禁食减肥)过程中。所有这些只应在医生给了你全面清晰指导后再做。 In these cases, it can help to remember that, with time, your glucose counter-regulatory response will kick in and your blood-glucose levels will stabilise. Also, when you go without food, your body starts breaking down its own fat stores for energy, some of which are converted by your body into ketones, a product of fat metabolism. Ketones are thought to help keep your hunger under control because your brain can use ketones in place of glucose for fuel. 在所有这些情况下,记住以下这一点都是有用的:随着时间推移,你的葡萄糖反馈调节反应会开启,你的血糖水平将趋于稳定。此外,当你没有进食时,你的身体开始分解自己的脂肪储存来提供能量,其中一些将被你的身体转换成酮——脂肪代谢的一种产物。酮被认为有助于控制饥饿,因为你的大脑可以使用酮代替葡萄糖作为能量。 A final – and very civilised – way of handling hanger is to suggest that difficult situations be dealt with after food, not before! 最后一个——并且很文明——的饿怒处理方式是,建议你在进食后再处理复杂的事情,而不是在此之前! (编辑:辉格@whigzhou) *注:本译文未经原作者授权,本站对原文不持有也不主张任何权利,如果你恰好对原文拥有权益并希望我们移除相关内容,请私信联系,我们会立即作出响应。

——海德沙龙·翻译组,致力于将英文世界的好文章搬进中文世界——